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1 Introduction

There has been much interest in high-energy scattering, and the eikonal approximation in

particular, in the contexts of gauge theories, string theories, and the duality which relates

them. Relevant recent papers include [1–6]. In this note, we obtain the eikonal approx-

imation to scattering in AdS5. This is relevant for high-energy limits of Green functions

in four-dimensional conformal field theory, and plays a partial role in dual descriptions

of high-energy hadron scattering and small-x deep-inelastic scattering in nonconformal

quantum field theories. Applications will be addressed elsewhere; here we present some

basic results.1

The string-dual description of scattering at very high energies and low momentum

transfer in large-N , large-λ gauge theories (here λ ∝ g2N is the ’t Hooft coupling) was

considered in [2], building on work of [8–10]. The dual string theory has strings propagating

on a space which is asymptotically AdS5 ×X (X a compact five-dimensional space of little

consequence here) with metric approaching

ds2 ≈ R2

z2

(
ηµνdxµdxν + dz2

)
+ ds2

X (1.1)

as z → 0. The metric is strongly corrected for z near zmax ∼ 1/Λ, where Λ is the

confinement scale.

The form of a two-to-two hadron scattering amplitude in the gauge theory, at leading

order in 1/N and s large compared to the confinement scale and to t, was shown in [2],

1Work with overlapping results appeared [7] as this paper was in preparation.
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following [9], to be proportional to a Pomeron propagator or “kernel” K0.

Im [M2→2(s, t)]∝
∫

dz
√

g(z) dz′
√

g(z′)Φ3(z)Φ4(z)

[
s̃2

(
zz′

R2

)2

K0(s, t, z, z′)

]
Φ1(z

′)Φ2(z
′).

(1.2)

Here the Φi are wave functions for states dual to gauge-theory hadrons, and the variable s̃

represents the square of the proper2 center-of-mass energy.

s̃ ≡ s√
g+−(z)g−+(z′)

=
zz′s

R2
. (1.3)

(Note s̃ is slightly ambiguous, though generally the ambiguity is subleading in the Regge

limit; we have taken s̃ to have a symmetric dependence on z and z′, as was done in [2].)

An analogous formula for deep-inelastic scattering at small-x was obtained earlier in [9].

One may obtain similar formulas from four-point functions, as in [11], by taking high-

energy limits of their (suitably regulated) Fourier transforms. In each of these cases, the

amplitude resembles (1.2); there are four external functions Φi(z) which are normalizable

or nonnormalizable modes of fields in the bulk, combined with a kernel K0.

In a conformal field theory, or in a confining theory with t ≪ −Λ2, the kernel takes

the form

K0

(
s, t, z, z′

)
=

2

π2
sJ0−2

∫ ∞

0
dν ν sinh πν Kiν

(
z|t|1/2

)
K−iν

(
z′|t|1/2

)
e−ν2τ . (1.4)

where τ = 1
2
√

λ
ln(s/s0). This is similar in form to the BFKL kernel [12–14], matching

its form precisely (but not its coefficients, which are λ-dependent) for t = 0, and having

similar form for large t. Like the BFKL kernel, its analytic structure involves a cut3 in the

J-plane extending along the negative real axis starting from J = J0,

J0 = 2 − 2√
λ

+ O
(
λ−1

)
. (1.5)

As λ → ∞, s fixed, the scattering amplitude is described by a pure graviton exchange,

with J0 → 2. Define the amputated four-point amplitude A(1) for a single t-channel

Pomeron exchange by

A(1)
(
s, x⊥, z; y⊥, w;x′⊥, z′; y⊥, w

)
= M(1)

(
s, x⊥, z;x′⊥, z′

) [
g(z)g(z′)

]−1/2
(1.6)

×δ2
(
x⊥ − y⊥

)
δ (z − w) δ2

(
x′⊥ − y′⊥

)
δ
(
z′ − w′)

In the limit λ large, s2K0, up to some metric factors and delta functions, is just the

imaginary part of M(1),

1

2i
Disc

[
M(1)

(
s, x⊥, z;x′⊥, z′

)]
∼ s̃2

∫
d2x⊥eiq⊥·x⊥

(
zz′

R2

)2

K0

(
s, q2

⊥, z, z′
)

(1.7)

2i.e., measured by a local observer in the bulk,
3In both cases, the cut becomes a discrete and dense set of poles when the coupling runs slowly.
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The full amplitude can be constructed from the discontinuity and crossing-symmetry as

usual through methods of analyticity. A short calculation using eqs. (1.2) and (1.4) reveals,

as λ → ∞,

M(1)
(
s, x⊥, z;x′⊥, z′

)
=

κ2
5

R
s̃2

(
zz′

R2

)
G3

(
x⊥, z;x′⊥, z′

)
(1.8)

where κ5 is the gravitational coupling in AdS5, G3 is the dimensionless scalar propagator

for a particle of mass
√

3/R in an Euclidean AdS3 space of curvature radius R, i.e., a

propagator over a three dimensional hyperboloid,

G3

(
x⊥, z;x′⊥, z′

)
= G3(u) =

1

4π

1
[
1 + u +

√
u(2 + u)

]2√
u(2 + u)

(1.9)

and

u =
δij

(
x⊥ − x′⊥)i (x⊥ − x′⊥)j + (z − z′)2

2zz′
(1.10)

(with i, j = 1, 2) is the chordal distance on the AdS3 transverse to the momentum direction

of the scattering particles. We will explain in the next section why this result should

be expected.

Since the amplitude grows faster than s, it violates unitarity at large s, and a resumma-

tion of higher-loop amplitudes is required to obtain sensible physics. In certain restricted

regions of z and z′, this resummation can be done via the eikonal approximation. Note

however that a complete field-theory computation, which requires integrating over z and

z′, typically is not possible within the bulk eikonal approximation. With this caveat, we

proceed to consider the eikonal approximation to the amplitude in a very limited regime.

We keep only leading-λ effects (pure gravity), x⊥ ≪ 1/Λ (no effects from confinement),

z ≪ zmax (where the hadrons are small compared to the confinement scale, and the metric

is pure AdS5), but with z and z′ large enough that the proper energy
√

s̃ is large compared

to the Planck mass. In addition, the proper distance between the points (x⊥, z) and (x′⊥, z′)

must not be too small, so that the scattering involves only linear gravity. We also ignore

the space X, assuming there is no angular-momentum transfer in the compact directions.

In the regime where the eikonal approximation is appropriate, it is easy to adapt flat-

space methods to write the eikonal result. This is because AdS spaces have Minkowski slices

with ordinary boost invariance, and because the derivation of the eikonal approximation

involves separating the light-cone directions from the transverse directions, which need not

be translationally invariant. (This will be most clear in our perturbative derivation.) The

result for the amputated 5-dimensional amplitude in the eikonal approximation is

Aeik

(
s, x⊥, z; y⊥, w;x′⊥, z′; y⊥, w

)
= Meik

(
s, x⊥, z;x′⊥, z′

) [
g(z)g(z′)

]−1/2
(1.11)

×δ2
(
x⊥ − y⊥

)
δ (z − w) δ2

(
x′⊥ − y′⊥

)
δ
(
z′ − w′)

showing the classic eikonal reduction of a function of four positions to a function of two

positions in the transverse dimensions, and with

Meik

(
s, x⊥, z;x′⊥, z′

)
= −2i

(
zz′

R2

)2

s
[
exp

{
iχ
(
s, x⊥, z;x′⊥, z′

)}
− 1
]

(1.12)
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where4

χ(s, x⊥, z;x′⊥, z′) =
1

2

κ2
5

R3
zz′s G3(u) (1.13)

We emphasize again that this form for the amplitude is valid only in the restricted regime

described above.

Our result can now be combined with external wave functions, normalizable or non-

normalizable, and integrated over z and z′, to allow partial computation of unamputated

high-energy scattering amplitudes, operator matrix elements or Green functions in a dual

gauge theory. However, since the result above holds only in limited regions of the coordi-

nates z, z′, no complete physical amplitude can be obtained from this result alone, at least

not without additional arguments showing that all other regions give small contributions

to the full unamputated amplitude. In the remaining sections we give multiple lines of

argument that support the result (1.11)–(1.13).

2 A consistency argument

First, we check the form of (1.11)–(1.13) by matching it to previous work. The amputated

form for the scattering amplitude in transverse representation (longitudinal momentum

space and transverse position space) must agree at transverse proper distances short com-

pared to R with known results on the eikonal approximation obtained by other methods,

including direct computation of multi-loop amplitudes at high energy [15–18] and the

shock-wave approach [19, 20].

In transverse representation, flat-space results for eikonal scattering take simple forms.

We know that if the proper transverse distance b̃ between two particles is sufficiently small

compared to R, as they scatter at high proper energy
√

s̃, then standard results must

apply.5 In D = 5 (bulk) spacetime dimensions, the leading order amputated amplitude in

transverse representation (with transverse delta functions removed) will be

M(1)
(
s̃, b̃
)

=
1

√
g+−g−+

κ2
5

s̃2

4πb̃
(2.1)

The functional dependence on s̃ and b̃ is as in flat space; the metric factor in front is due6

to our use of a transverse position basis. The flat-space eikonal approximation then implies

Meik

(
s̃, b̃
)
∝ −2i

s̃√
g+−g−+

[
exp

{
i

2
κ2

5

s̃

4πb̃

}
− 1

]
. (2.2)

4Since κ2
5/R3 = 1/(MP R)3, where MP is the five-dimensional Planck constant, we see that χ depends

only on the number of colors N in the gauge theory, χ ∼ N−2, where N ∝ (MP R)3/2.
5Note that this argument requires that s̃, though large compared to the momentum transfer, must not be

so large that the eikonal approximation is nowhere valid for b̃ < R. For fixed s̃ we can always consider taking

R sufficiently large that the argument applies; as we will see this is enough to fix the answer. Similarly b̃

must not be so small as to probe the nonlinear gravity near the scattering objects.
6More precisely, though natural, it is actually conventional, since one could absorb it into the amputa-

tion prescription.
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Here we have used the fact that every order of the eikonal approximation must trans-

form in the same way under diffeomorphisms, so the phase shift in the exponent must be

an invariant.

On the other hand, we also know that for λ → ∞, the leading-order high-energy scat-

tering amplitude in AdS5 is due simply to t-channel graviton exchange, so the gravitational

propagator GMN,M ′N ′ must appear in the tree amplitude. At high energy, only the term in

G proportional to g++g−− survives, and this term is just the massless scalar propagator G5

in AdS5, a function by AdS isometries (the conformal invariance of the dual gauge theory)

of the chordal distance

u5 =
ηµν (x − x′)µ (x − x′)ν + (z − z′)2

2zz′
(2.3)

Explicitly [11, 21]

G++,−−
(
x, z;x′, z′

)
= 2

(
R2

zz′

)2

G5(u5). (2.4)

with

G5(u5) =
1

8π2

[
2 +

1 + u5

[u5(2 + u5)]3/2
− 2(1 + u5)

[u5(2 + u5)]1/2

]
(2.5)

For near-forward scattering at high energy, the total momentum transfer is limited. In

a collinear frame where the light-cone momentum components become large, the total

momentum transfer is nearly transverse and the longitudinal components of momentum

transfer must go to zero asymptotically. In such a frame, the AdS5 massless scalar propa-

gator G5 should be evaluated at zero longitudinal momentum transfer, i.e.

G5(q± = 0, x⊥, z;x′⊥, z′) =

∫
dx+dx−G5(u5) = zz′G3(u) (2.6)

since u5 = u − x+x−/zz′. Here we used the definitions in (1.9) and (1.10).7

Now we may simply note that a scalar propagator in 5 dimensions approaches 1/b̃

as b̃ → 0, since the propagator satisfies a flat transverse Laplacian at short distances.

Observing that b̃ → R
√

2u as u → 0 and matching to (2.1) and (2.2) fixes the results

M(1)
(
s̃, x⊥, z;x′⊥, z′

)
=

1

R

(
zz′s

R2

)2(zz′

R2

)
G3(x

⊥, z;x′⊥, z′) (2.7)

and

Meik = −2i
1

√
g+−g−+

s̃

[
exp

{
i

2
κ2

5R
−1s̃ G3(u)

}
− 1

]

= −2is

(
zz′

R2

)2 [
exp

{
i

2

κ2
5

R3
zz′s G3(u)

}
− 1

]
, (2.8)

in agreement with our earlier claim.

The above arguments can all be easily generalized to other dimensions. The only work

is to obtain the correct normalization.
7Note this is a special case of a general relation, which states that the propagator of a bulk scalar

in D dimensions of mass (mR)2 = ∆(∆ − D + 1), at zero longitudinal momentum transfer, is zz′ times

the propagator for a bulk scalar in AdSD−2 of mass (mR)2 = (∆ − 1)(∆ − D + 2). This is dual to the

following simple statement. The two-point function for an operator of dimension ∆ in D− 1 dimensions on

the boundary of AdSD, at zero longitudinal momentum transfer, reduces to the two-point function of an

operator of dimension ∆ − 1 in D − 3 boundary dimensions.

– 5 –
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Figure 1. Ladder and crossed ladder diagrams contributing to the eikonal approximation in the

high energy limit.

3 A diagrammatic derivation

We may also derive the eikonal result as a sum of the high-energy contribution of pertur-

bative diagrams illustrated in figure 1, along the lines of Cheng and Wu [15, 22–26] or the

methods pioneered by many other authors in the gravitational case; see for example [16–

20, 27, 28]. For Anti de Sitter space this consists of summing a class of Witten diagrams,

where we choose scalar fields for the external lines and gravitons for the exchanged rungs

between these two sides. The sum includes all orders of the coupling to the sources giving

rise to all ladder and crossed ladder diagrams. The mechanism leading to eikonalization

at high energies in flat background has long been understood. From the perspective of

perturbative summation, the key simplification necessary is the separation of dependence

on the longitudinal light-cone momentum coordinates, q±i and the transverse impact x⊥
i

co-ordinates. This feature can already be appreciated by analyzing the high-energy be-

havior for the sum of box and crossed-box diagrams in flat space. Therefore, we begin by

providing a brief description in φ3 theory, paying particular attention to the dependence

of amplitudes on transverse coordinates, before treating the case of graviton exchange

in AdS5.

3.1 Flat background

We begin by considering the 4-particle amputated Green’s function, A(pi), for elastic scat-

tering p1 + p2 → (−p3) + (−p4), by exchange of a massless field of spin J . We use the

“all-incoming” convention, with s = −(p1 + p2)
2, t = −q2 = −(p1 + p3)

2. The reasons for

starting with the Green’s function rather than an on-shell scattering amplitude are twofold.

First, in the conformal case there is no on-shell S matrix, and second, we choose to trans-

form all transverse momenta p⊥i to co-ordinate space, which is not possible on the mass

shell (p2
i = −m2). This procedure greatly simplifies the analysis of the high-energy depen-

dence of the ladder graphs. After this transformation to the “transverse representation”,

we also choose to drop the overall conservation delta function for longitudinal momentum:

– 6 –
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(2π)2δ(p±1 + p±2 + p±3 + p±4 ). In the high-energy limit where p+
1 ≃ −p+

3 and p−2 ≃ −p−4 are

large, we will verify that, order by order, the scattering is local in transverse coordinates,

A
(
p±i , x⊥

i

)
=
∑

n=1

A(n) →
(
∑

n

M(n)
(
p+
1 , p−2 , x⊥

1 − x⊥
2

))
δ2
(
x⊥

1 − x⊥
3

)
δ2
(
x⊥

2 − x⊥
4

)

(3.1)

and that the resulting sum,

Meik

(
p+
1 , p−2 , x⊥ − x′⊥

)
=
∑

n=1

M(n)
(
p+
1 , p−2 , x⊥ − x′⊥

)
= −2is

[
eiχ(s,x⊥−x′⊥) − 1

]
,

(3.2)

takes the eikonal form.

3.1.1 Tree and one-loop scattering in a flat background

The tree level amputated amplitude in transverse representation,

A(1)(p±i , x⊥
i ) = M(1)(p±i , x⊥

1 − x⊥
2 )δ2(x⊥

1 − x⊥
3 )δ2(x⊥

2 − x⊥
4 ) (3.3)

M(1)(p±i , x⊥
1 − x⊥

2 ) = g2
0s

JG(q±, x⊥
1 − x⊥

2 ) (3.4)

is given in terms of the t-channel massless propagator,

G(q±, x⊥) =

∫
d2q⊥

(2π)2
eiq⊥x⊥

q⊥2 − 2q+q− − iǫ
, (3.5)

where q± = −(p±1 + p±3 ). We have introduced a factor sJ for each t-channel exchange in

anticipation of the case of a graviton exchange, where J = 2; of course our scalar model

has J = 0. At high energies, q± = O(1/
√

s), we have

M(1)(p+
1 , p−2 , x⊥ − x′⊥) ≃ g2

0s
JG(q± = 0, x⊥ − x′⊥) . (3.6)

This is to be compared with eq. (1.8) for the one-graviton exchange contribution in AdS5.

The amputated amplitude at one-loop order involves a box diagram, and a crossed box

diagram, obtained from the box by interchanging (p±1 , x⊥
1 ) with (p±3 , x⊥

3 ) or equivalently

(p±2 , x⊥
2 ) and (p±4 , x⊥

4 ). The sum of the two diagrams, in transverse representation, can be

written in a compact form (see figure 2):

A(2)
(
p±i , x⊥

1 , x⊥
3 , x⊥

2 , x⊥
4

)
=

i(2π)2

2!

∫
d2q±1
(2π)2

d2q±2
(2π)2

δ2
(
q± − q±1 − q±2

)
A13

(
p±1 , q±1 , x⊥

1 , x⊥
3

)

×
[(
−ig2

0sJ
)
G
(
q±1 , x⊥

1 − x⊥
2

)]

×
[(
−ig2

0sJ
)
G
(
q±2 , x⊥

3 − x⊥
4

)]
A24

(
p±2 ,−q±1 , x⊥

2 , x⊥
4

)
(3.7)

A13(p
±
1 , q±1 , x⊥

1 , x⊥
3 ) = S(p±1 + q±1 , x⊥

3 , x⊥
1 ) + S(p±1 + q±2 , x⊥

1 , x⊥
3 )

A24(p
±
2 , q±1 , x⊥

2 , x⊥
4 ) = S(p±2 + q±1 , x⊥

4 , x⊥
2 ) + S(p±2 + q±2 , x⊥

2 , x⊥
4 ) (3.8)

– 7 –
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Figure 2. Sum of box and cross box diagram is factorized with combinatoric weight 1/2!.

Here S is the propagator for the scattered particles, and for a scalar of mass µ, it is

S
(
p±, x⊥

)
=

∫
d2p⊥

(2π)2
eip⊥x⊥

p⊥2 − 2p+p− + µ2 − iǫ
. (3.9)

The two terms on the right-hand side of each equation in (3.8) represent a sum over all

possible orderings of the rungs of the ladder as they connect to one of the ladder’s sides.

The product of A13 and A24 in eq. (3.7) then leads to four terms. Since the rungs are

indistinguishable, these four terms represent a double-counting of each Feynman diagram.

Consequently a factor of 1/2! has been added to compensate for this over-counting.

Extracting the high-energy behavior of eq. (3.7) can be done in the following two

steps. We first note that, for near-forward scattering at high energies, the limit s large

is characterized by p+
1 ≃ −p+

3 and p2
− ≃ −p−4 both large, and q, q1, q2 asymptotically

space-like, with q±i = O(1/
√

s). In this limit, G(q±1 , x⊥
1 − x⊥

2 ) ≃ G(q±1 = 0, x⊥
1 − x⊥

2 ) and

G(q±2 , x⊥
3 − x⊥

4 ) ≃ G(q±2 = 0, x⊥
3 − x⊥

4 ) can be taken out of the
∫

d2q±1 d2q±2 δ2(q± − q±1 −
q±2 ) integrals.

For definiteness, let us next use q±1 as independent integration variables. At high

energies, the dependence of A13 on q+
1 drops out and it becomes a function of q−1 only.

Conversely, A24 is independent of q−1 and is a function of q+
1 . This factorizable dependence,∫

d2q−1
∫

dq+
1 A13A24 ≃

∫
d2q−1 A13

∫
dq+

1 A24, allows us to carry out the q±1 integrations

explicitly. Focus first on the integral over A13,

∫
dq−1
2π

A13

(
p+
1 , q−1 , x⊥

1 , x⊥
3

)
(3.10)
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which involves a sum of two pole terms coming from the S propagators. At high energies,

the s-channel pole occurs at 0 = µ2 + (p1 + q1)
2 − iǫ, i.e., q−1 ≃ O(1/p+

1 ) − iǫ, and the

u-channel pole occurs at q−1 ≃ O(1/p+
1 ) + iǫ. Although each pole term vanishes only as

O(1/q−1 ) for q−1 large, the sum goes as O(1/(q−1 )
2
). Closing the contour leads simply to

(−i) Residue [ S ]q−≃0−iǫ =
(
i/2p+

1

) ∫ d2p⊥eip⊥(x⊥

1 −x3
⊥)

(2π)2
=
(
i/2p+

1

)
δ2
(
x⊥

1 − x3
⊥
)

(3.11)

Similarly for A24, closing the contour in q+
1 leads to (i/2p−2 )δ2(x⊥

2 − x4
⊥). Putting these

together, we wind up with

A(2)
(
p+
1 , p−2 , x⊥

1 , x⊥
2 , x⊥

3 , x⊥
4

)
≃ M(2)

(
p+
1 , p−2 , x⊥

1 − x⊥
2

)
δ2
(
x⊥

1 − x⊥
3

)
δ2
(
x⊥

2 − x⊥
4

)
(3.12)

M(2)
(
p+
1 , p−2 , x⊥ − x′⊥) = −2is

1

2!

[
ig2

0sJ−1G
(
q± = 0, x⊥ − x′⊥)/2

]2
. (3.13)

Note that all the dependences on x⊥
1 − x⊥

3 and x⊥
2 − x⊥

4 reduce to delta-functions, i.e., the

effective interaction remains local, with “zero transverse deflection”. This is a key feature

common to all eikonal results, and we will see in a moment that it generalizes to the case

of AdS space.8

3.1.2 Eikonal exponentiation

We can now re-sum the infinite series of loop graphs to obtain the eikonal approximation,

as in [15]. Consider a ladder with n rungs, where arbitrary crossings of rungs are allowed.

Denote transverse coordinates for these 2n vertices by {xi} and {x′
j}, i, j = 1, · · · , n. The

sum of all nth order diagrams can be obtained by evaluating

i(2π)2

n!

∫ n∏

k=1

dq+
k dq−k

(2π)2
δ2
(∑

q±i

)
A13

(
p±1 , p±3 , q±i , x⊥

j

)

×
[
∏

k

(
−ig2

0s
J
)
G
(
q±k ≃ 0, x⊥

k , x′⊥
k

)]
A24

(
p±2 , p±4 ,−q±l , x′⊥

p

)
(3.14)

where we have ordered the light-cone momenta of exchanged rungs, q±k , k = 1, · · · , n, and

have also dropped the dependence of exchanged propagators on {q±k }, as is valid at high

energies, and as was done earlier for the one-loop contribution. Here A13 is given by a

sum of n! terms, each a product of n − 1 propagators, corresponding to all possible ways

of attaching n exchanged propagators to one side of the eikonal ladder. A24 is defined

8It is worth providing a more intuitive interpretation of the result just obtained. The q−1 integral over

A13 can be written more symmetrically as

Z

dq−1 dq−2 δ(q−1 + q−2 )A13 ∼
1

−2p+

1

Z

dq−1 dq−2 δ(q−1 + q−2 ) ×

»

1

q−1 + iǫ
+

1

q−2 + iǫ

–

The integrand can be shown simply to correspond to the Fourier transform of θ(x+

3 − x+

1 ) + θ(x+

1 − x+

3 ).

That is, the different permutations in eq. (3.8) simply correspond to scattering in different “time-orderings”.

For each ordering, the scattering amplitude is constant and local, proportional to (1/p+

1 )δ2(x⊥

1 −x⊥

3 ). This

physical picture generalizes to the case of multiple exchanges.
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similarly. Both are generalization of eq. (3.8) from n = 2 to n > 2. As for the n = 2 case,

a factor of 1/n! is supplied to account for over-counting.

To extract the high-energy behavior, we again take advantage of {q+
i } and {q−i } fac-

torization, which allows us to carry out the integrations

∏

i

∫
dq−i
2π

δ

(
∑

i

q−i

)
A13

(
p+
1 , q−i , x⊥

j

)∫ dq+
i

2π
δ

(
∑

i

q+
i

)
A24

(
p−2 ,−q+

k , x′⊥
l

)
(3.15)

Following the analysis of Cheng and Wu [15], one finds that the net result of these integra-

tions is to produce

[(i)2/2s]n−1
n−1∏

i=1

[
δ2
(
x⊥

i − x⊥
i+1

)
δ2
(
x′⊥

i − x′⊥
i+1

)]
. (3.16)

That is, we can set x⊥
i = x⊥ and x′⊥

j = x′⊥, and the feature of “zero transverse deflection”

persists in each order. Integrating over all but 2 of these transverse coordinates, we are

led to

A(n)
(
p+
1 , p−2 , x⊥

1 , x⊥
3 , x⊥

2 , x⊥
4

)
≃ M(n)

(
p+
1 , p−2 , x⊥

1 , x⊥
2

)
δ2
(
x⊥

1 − x⊥
3

)
δ2
(
x⊥

2 − x⊥
4

)
(3.17)

M(n)
(
p+
1 , p−2 , x⊥ − x′⊥) = −2is

1

n!

[
ig2

0s
J−1G

(
q± = 0, x⊥ − x′⊥)/2

]n
(3.18)

After summing over n, we arrive at the eikonal amplitude

Meik

(
p+
1 , p−2 , x⊥ − x′⊥

)
=
∑

n=1

M(n)
(
p+
1 , p−2 , x⊥ − x′⊥

)
= (−2is)

[
eiχ(s,x⊥−x′⊥) − 1

]

(3.19)

where the eikonal is

χ
(
s, x⊥ − x′⊥

)
=

1

2
g2
0 sJ−1 G

(
q± = 0, x⊥ − x′⊥

)
(3.20)

Upon taking a 2-d Fourier transform, we arrive at the on-shell amplitude

T (s, t) =

∫
d2x⊥e−ix⊥·q⊥M

(
p+
1 , p−2 , x⊥

)
≃ −2is

∫
d2x⊥e−ix⊥·q⊥

[
eiχ(s,x⊥−x′⊥) − 1

]

(3.21)

3.2 Eikonal expansion for AdS5 gravity

Let us return to the problem of summing eikonal graphs in AdS5, which can be carried out

in close analogy with the flat background. As described earlier, we begin by considering

a gauge theory scattering amplitude (or correlation function), truncated by dropping the

external hadron wave functions (or external boundary-to-bulk AdS5 propagators) on each

external leg, and then written in the transverse representation (p±, x⊥
i , zi). We work only

in the regime where the amputated amplitude can be evaluated using propagators in AdS5

space, which are conformal Green’s function in AdS5 with 3 transverse dimensions in an

AdS3 submanifold.
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In the high-energy limit we only need to keep the ++,−− component of the graviton

propagator, which simplifies the analysis greatly. In what follows, we generalize this to

n-graviton exchanges and observe how eikonalization arises for scattering in AdS5.

Consider the case of the one-graviton-exchange Witten diagram for scalar sources on

the boundary of AdS5. The amplitude for this diagram is [11]

κ2
5

∫
dz

√
g

∫
dz′
√

g′ T̃MN (p1, p3, z)G̃MNM ′N ′(q, z, z′)T̃M ′N ′

(p2, p4, z
′) (3.22)

in momentum representation, where T̃MN is the energy-momentum tensor for the scalar

source in the bulk and G̃MNM ′N ′ is the graviton propagator, both in momentum representa-

tion. At high energies, keeping the leading ++,−− component, we find for the amputated

amplitude in transverse representation

M(1)(s, x⊥, z;x′⊥, z′) =
κ2

5

R
s̃2

(
zz′

R2

)
G3(x

⊥, z, x′⊥, z′) (3.23)

which has previously been given in eq. (1.8). Here R is the AdS radius and G3 is the

AdS3 scalar propagator, eq. (1.9), which can be expressed in terms of the chordal distance,

eq. (1.10).

Let us turn next to the one-loop contribution, which involves a box diagram and a

crossed box. The total contribution at high energies, generalizing eq. (3.7) by keeping only

graviton exchanges of helicity structure (++,−−), can be expressed as

A(2)
(
p±i , x⊥

i , zi

)
= i

1

2!(2π)2

∫
d2q±1 d2q±2 δ2

(
q± − q±1 − q±2

)

×[A13]
[
−i
(
κ2

5/R
3
) (

z1z2s/R
2
)2

(z1z2)G3 (u[1, 2])
]

×
[
−i
(
κ2

5/R
3
) (

z3z4s/R
2
)2

(z3z4)G3 (u[3, 4])
]

[A24] (3.24)

where u[1, 2] and u[3, 4] are chordal distances in an obvious notation. Again, similar to

eq. (3.8), we have

A13(p
±
1 , q±1 , q±2 , x⊥

1 , z1, x
⊥
3 , z3) =

1

R3

[
G5(p

±
1 + q±1 , x⊥

3 , z3, x
⊥
1 , z1)

+G5(p
±
1 + q±2 , x⊥

1 , z1, x
⊥
3 , z3)

]

A24(p
±
2 ,−q±1 ,−q±2 , x⊥

2 , z2, x
⊥
4 , z4) =

1

R3

[
G5(p

±
1 − q±1 , x⊥

4 , z4, x
⊥
2 , z2)

+G5(p
±
1 − q±2 , x⊥

2 , z2, x
⊥
4 , z4)

]
(3.25)

which account for both the “box” and the “cross-box” diagrams. Here G5(p
±, x⊥, z;

x′⊥, z′) is the AdS5 scalar propagator in a transverse representation, which has previously

been introduced, eq. (2.6). It can be expressed as

G5(p
±, x⊥, z;x′⊥, z′) = (zz′)2

∫
d2p⊥

(2π)2
eip⊥(x⊥−x′⊥)

∫
kdk

J2(zk)J2(z
′k)

k2 + p⊥2 − 2p+p−
. (3.26)

Let us concentrate on extracting the high-energy behavior for A(2). The situation is

nearly identical to that for a flat background, leading to factorization in q±1 , and the need
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to evaluate (1/2π)
∫

dq−1 A13 and (1/2π)
∫

dq+A24 separately. Focus on the A13 integral,

which again involves two terms, each an integral over a propagator G5. Using eq. (3.26),

integration over q−1 leads to

−i

R3
Residue [ G5 ]q−≃0−iǫ =

(
iR−3/2p+

1

)∫ d2p⊥

(2π)2
eip⊥(x⊥

1
−x⊥

3
) (z1z3)

2
∫

kdkJ2 (z1k) J2 (z3k)

=
(
iR2/2p+

1 z2
1

)
δ2
(
x⊥

1 − x⊥
3

)
δ (z1 − z3) /

√
g1 (3.27)

using the Bessel function completeness relation; here g1 ≡ det g(z1). Similarly, we obtain

(1/2π)

∫
dq+

1 A24 =
(
iR2/2p−2 z2

2

)
δ2
(
x⊥

2 − x⊥
4

)
δ (z2 − z4) /

√
g2 . (3.28)

Putting these together, we again verify “zero transverse deflection”, and

M(2)
(
p+
1 , p−2 , x⊥, z;x′⊥, z′

)
= −2i

(
zz′/R2

)2
s

1

2!

[
i
(
κ2

5/2R
3
) (

zz′s
)
G3(u)

]2
(3.29)

This represents a direct generalization of the flat-space result, eq. (3.13).

The generalization to higher loops can similarly carried out as for flat space. We obtain

A(n)
(
p±i , x⊥

i , zi

)
≃ M(n)

(
s, x⊥

1 , z1, x
⊥
2 , z2

)

×
[
δ2
(
x⊥

1 − x⊥
3

)
δ (z1 − z3) /

√
g1

] [
δ2
(
x⊥

2 − x⊥
4

)
δ (z2 − z4) /

√
g2

]

(3.30)

M(n)
(
p+
1 , p−2 , x⊥, z;x′⊥, z′

)
= −2i

(
zz′/R2

)2
s

1

n!

[
i
(
κ2

5/2R
3
) (

zz′s
)
G3(u)

]n
(3.31)

Summing over n, we have

Meik(p
+
1 , p−2 , x⊥, z;x′⊥, z′) = −2is

(
zz′

R2

)2 [
eiχ(s,x⊥−x′⊥,z,z′) − 1

]
(3.32)

where

χ(s, x⊥ − x′⊥, z, z′) =
1

2

(
κ2

5

R3

)
(zz′s) G3(u) =

1

2
(RMP )−3(zz′s) G3(u) (3.33)

as promised.

Lets up summarize the essential feature of the eikonal approximation. The dependences

on x⊥
1 − x⊥

3 , z1 − z3 and x⊥
2 − x⊥

4 , z1 − z3 reduce to delta-functions so that there is “zero

transverse deflection” of the incoming states during the interaction. As we now will see

in the shock wave derivation, this “freezing” of transverse motion is a consequence of the

instantaneous interaction in light-cone time x+.

4 Shock wave derivation

An alternative approach to the eikonal approximation for gravity is to study the semi-

classical limit of one particle scattering in the presence of a shock wave created by the other.
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In particular ’t Hooft computed the eikonal amplitude for high-energy scalar particles in

flat space gravity [19, 20]. The shock is given by the Aichelburg-Sexl metric [29], which is

the Schwarzschild metric for a particle with mass mi ≪ MP boosted to the light-cone and

approximated for impact parameters far outside the Schwarzschild radius. Here we will

show that by generalizing this metric to a shock wave in the bulk 5-d AdS space [30–32],

we are able to derive the eikonal amplitude without recourse to perturbation theory used

in section 3. This has the advantage that it provides greater insight and a complementary

way to understand the source of corrections to this approximation.

Consider the shock wave created by particle 2 with a very large longitudinal light-cone

“energy” p−2 , on the light-cone x+ = (x0+x3)/
√

2 = 0 at fixed transverse position x⊥ = x′⊥

and z = z′. The energy momentum tensor for this particle in the bulk is

T−−(x+, x⊥, z;x′⊥, z′) =
(
z2/R2

)
p−2 δ

(
x+
)
δ2
(
x⊥ − x′⊥

)
δ
(
z − z′

)
/
√

g. (4.1)

Although tensor indices are raised and lowered by the AdS background metric gMN =

ηMNR2/z2, we choose to treat the momentum components, pµ = ηµνpν , as flat space 4-

vectors, to match with the Noether currents on the boundary Yang-Mills theory. Note

that extra factors of z in T−− ensure that T++ = g+−g+−T−− and h++ both scale like z−2

under z → γz, xµ → γxµ, pµ → γ−1pµ, as they must for a conformal dual gauge theory.

With this as the source to the Einstein equation, one arrives at the modified metric,

ds2 = (gMN + hNM )dxMdxN = R2 −2dx+dx− + (dx⊥)2 + dz2

z2
+ h++(x+, x⊥, z)dx+dx+,

(4.2)

where
√

g = R5/z5 and g+− = g−+ = −R2/z2.

The eikonal approximation requires solving gravity in the Gaussian approximation for

fluctuations hMN relative to the fixed AdS5 background metric, gMN (z). Expanding the

Einstein Hilbert action to quadratic order for the relevant terms we have,

SEH [g + h] ≃ SEH [g] +
1

2κ2
5

∫
d4xdz

√
g

[
−1

2
∂Nh+

− ∂Nh+
− − 1

2
∂Nh−

+ ∂Nh−
+

]

+

∫
d4xdz

√
g
[
h++T++ + h−−T−−]+ O(h3) , (4.3)

where for convenience we have introduced the dependent metric functions: h−
+ = h+

− =

g−+h++ and h+− = h−
+ = g+−h−−. This leads to the linearized Einstein equation,9

− ∆2 h++(x+, x⊥, z) = 2κ2
5T++(x+, x⊥, z;x′⊥, z′) , (4.4)

where κ2
5 = 1/M3

P and

∆j = z−j 1√
g
∂M

√
ggMN∂Nzj =

1

R2

[
z2∂2

z + (2j − 3)z∂z + j(j − 4) + z2∇2
⊥
]

, (4.5)

9Note that in flat space, we would need to solve for the transverse Greens function,

−∇2
⊥h++ = 2κ2

Dp−

2 δ(x+)δD−2(x⊥) ,

which for D = 4 agrees with the Aichelburg-Sexl metric: h++ = −p−

2 κ2
4 log(|x⊥|/C)δ(x+)/π.
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is the general tensor Laplacian operator for AdS5 defined in ref. [2]. The solution to the

Einstein equation (4.4) is proportional to the bulk-to-bulk scalar propagator in AdS3:

h++(x+, x⊥, z;x′⊥, z′) = 2
(
z′/z

) (
κ2

5/R
)
p−2 G3(x

⊥ − x′⊥, z, z′)δ(x+) , (4.6)

where we have reinserted the explicit dependence on the location, (x′⊥, z′), of the

source (4.1). Note that the factor of z′/z is uniquely determined at this point result-

ing below in a scattering phase symmetric in z, z′. From this solution we also obtain by

the raising operator g−+ = −z2/R2,

h−−(x+, x⊥, z;x′⊥, z′) = 2zz′
(
κ2

5/R
3
) (

z2/R2
)
p−2 G3(x

⊥ − x′⊥, z, z′)δ(x+) . (4.7)

Since the AdS3 propagator, G3(u) defined in eq. (1.9), is a function of the scale-invariant

variable u, h−− has scaling dimension −2 as it should.

Next we find the amplitude for particle 1 to propagate in this background metric. This

is just the bulk-to-bulk propagator G(x, z;x′, z′) for particle 1 in the presence of the shock

wave at x+ = 0 introduced by particle 2. Its equation is the same as for G5(u), except for

an additional term10 for the contribution of h−−:

[
2z2∂+∂−−z2∂2

z + 3z∂z−z2∇2
⊥+R2h−−∂2

−
]
G(x, z;x′, z′)=R5δ4

(
x − x′) δ

(
z − z′

)
/
√

g.

(4.8)

The metric h−−(x⊥, x+, z) preserves translational invariance in x−, so it is natural to

transform to fixed p+
1 ,

G̃p+

1

(x+ − x′+, x⊥ − x′⊥, z, z′) =

∫
dx−eip+

1
(x−−x′−)G(x, z;x′, z′) . (4.9)

The resultant equation is just the light-cone Schroedinger equation with “time” τ = x+

and conjugate “Hamiltonian” H = P−:

[−i∂τ + H] G̃p+

1

(x+ − x′+, x⊥ − x′⊥, z, z′) =
(
z3/2p+

1

)
δ2
(
x⊥ − x′⊥

)
δ(x+ − x′+)δ(z − z0)

(4.10)

where

2p+
1 H = −∂2

z + 3z−1∂z −∇2
⊥ − (p+

1 )2R2z−2h−−(x⊥, x+, z) . (4.11)

The solution is given by the time-ordered product

G̃p+

1

(x+
3 − x+

1 , x⊥
3 − x⊥

1 , z3, z1) = 〈x⊥
3 , z3| Tτ

[
exp

(
−i

∫ x+

3

x+

1

dτH

)]
|x⊥

1 , z1〉. (4.12)

The Hamiltonian operator has states enumerated by |x⊥, z〉. We can factorize this into the

product of three segments τ < 0, τ = 0, τ > 0.

Tτ

[
exp

(
−i

∫ x+

3

ǫ
dτĤ

)]
exp

(
−i

∫ ǫ

−ǫ
dτH

)
Tτ

[
exp

(
−i

∫ −ǫ

x+

1

dτĤ

)]
(4.13)

10Note that to linear order the inverse of gMN +hMN is gMN−hMN , which implies that the shock potential

in the propagator (4.8) is −h−−(x+, x⊥, z; x′⊥, z′) with the correct sign for gravitational attraction.
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The first and the third factors above would contribute to the bulk-to-boundary propagators,

which are dropped when amputating the Green’s function. The integral over H for the

middle term receives its only contribution from the delta function in h−−(x+) ∼ χ δ(x+),

giving rise to the eikonal phase shift,

χ(s, x⊥ − x′⊥, z, z′) = (κ2
5/R

3)szz′G3(x
⊥ − x′⊥, z, z′)/2 , (4.14)

for a (diagonal) unitary S matrix:

S(s, x⊥ − x′⊥, z, z′) = eiχ(s, x⊥ − x′⊥, z, z′) . (4.15)

This phase is in agreement with our earlier result for the truncated bulk scattering ampli-

tude,

M(s, x⊥ − x′⊥, z, z′) = −2is

(
zz′

R2

)2 [
eiχ(s, x⊥ − x′⊥, z, z′) − 1

]
. (4.16)

In principle, one could derive the prefactor in this equation within the context of the shock

wave calculation; here we have merely matched to the known tree-level amplitude.

5 Conclusion

We have considered the eikonal approximation to high-energy scattering in the bulk of

AdS space, as might be relevant for a portion of a calculation of high-energy scattering

in gauge theory, as well as other physical processes. We gave three approaches to the

eikonal amplitude: a heuristic picture for the AdS scaling form, an explicit resummation

of Witten diagrams, and a shock wave derivation. All have their advantages for further

generalizations and clearer physical intuition.

However, our results for the eikonal phase are valid only for linearized semiclassical

gravity. For most physically important applications, the restrictions on our results must be

relaxed. There are a number of technical and conceptual advances that are needed, some

of which are well within reach.

• Generalization to finite λ. There is no obstruction to extending our results to the

case of Regge behavior at finite λ, using [2]. Interesting comparisons can be made

with eikonal studies of flat-space string theory, such as [18, 24, 27, 33].

• Generalization to non-conformal settings. This is necessary for a study of how the

string theory realizes the dual gauge theory’s Froissart-Martin bound. In [2] we

studied effects of confinement and running couplings, and again the obstructions to

extending our results to this case are purely technical.

• Corrections to the eikonal approximation. Full gauge-theory computations require

integrals over bulk coordinates z and z′, but the eikonal approximation is typically

valid only in part of the bulk; for instance, it may fail as z → z′. While reasonable

approximations will allow some gauge-theory computations to be carried out reliably,
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a stronger understanding of scattering in all regions of bulk coordinates is clearly

desirable. A minimal consistency requirement is that of “local small angle” scattering,

e.g., local momentum transfer should be less than the local energy. This has been

commented upon briefly in the final section of [2] and more extensively in [34]. In

addition, one must also take into account other nonlinear effects.

• Accounting for nonlinear corrections. At small bulk impact parameter, the gravita-

tional fields of the scattering particles become sufficiently large to require nonlinear

gravity to be incorporated. In some regimes, one must incorporate string interac-

tions, such as triple-Pomeron vertices; a role for effective Reggeon field theories may

be expected. In other regimes one must include nonperturbative effects, such as black

holes [1, 35, 36]. Only in these contexts can one begin to address questions of how

field-theory unitarity is restored at strong coupling, as relevant to high-energy cross-

sections, saturation phenomena, and heavy-ion collisions. It is clear that quantum

string corrections must be addressed as well for some relevant processes, if contact is

to be made with QCD itself.

Despite the limited region of validity of our results, we see signs of what we expect are

general features that go well beyond this regime. The eikonal phase is proportional to the

Euclidean transverse AdS3 Green’s function, a strong-coupling manifestation of conformal

symmetry of the gauge theory in the transverse plane, which is known to arise for the

weak-coupling BFKL kernel [37, 38]. The conventional picture in 4-d flat space, where the

scattering particle picks up a phase at a fixed position in the transverse impact parameter

space x⊥ = (x1, x2), is generalized here to a phase at a fixed bulk transverse position x⊥, z.

In both the perturbative and shock wave pictures, the exchange of an arbitrary number of

rungs in a ladder graph becomes effectively local, thus freezing all transverse motion. We

expect these and other features will survive, or be naturally extended, as other regimes

are explored, and a deeper understanding of high-energy scattering in gauge and string

theory emerges.
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